Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720072

RESUMEN

Psychedelic substances such as lysergic acid diethylamide (LSD) and psilocybin show potential for the treatment of various neuropsychiatric disorders1-3. These compounds are thought to mediate their hallucinogenic and therapeutic effects through the serotonin (5-hydroxytryptamine (5-HT)) receptor 5-HT2A (ref. 4). However, 5-HT1A also plays a part in the behavioural effects of tryptamine hallucinogens5, particularly 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), a psychedelic found in the toxin of Colorado River toads6. Although 5-HT1A is a validated therapeutic target7,8, little is known about how psychedelics engage 5-HT1A and which effects are mediated by this receptor. Here we map the molecular underpinnings of 5-MeO-DMT pharmacology through five cryogenic electron microscopy (cryo-EM) structures of 5-HT1A, systematic medicinal chemistry, receptor mutagenesis and mouse behaviour. Structure-activity relationship analyses of 5-methoxytryptamines at both 5-HT1A and 5-HT2A enable the characterization of molecular determinants of 5-HT1A signalling potency, efficacy and selectivity. Moreover, we contrast the structural interactions and in vitro pharmacology of 5-MeO-DMT and analogues to the pan-serotonergic agonist LSD and clinically used 5-HT1A agonists. We show that a 5-HT1A-selective 5-MeO-DMT analogue is devoid of hallucinogenic-like effects while retaining anxiolytic-like and antidepressant-like activity in socially defeated animals. Our studies uncover molecular aspects of 5-HT1A-targeted psychedelics and therapeutics, which may facilitate the future development of new medications for neuropsychiatric disorders.

2.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659771

RESUMEN

Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.

3.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464110

RESUMEN

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and thereby more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress -here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J. Utilizing the chronic social defeat stress (CSDS) and chronic variable stress (CVS) paradigms, we first showed sexual dimorphism in the behavioral stress response between the mouse strains. Further, we observed an interaction between genetic background and vulnerability to prolonged exposure to non-social stressors. Finally, we found that DBA/2J and C57BL/6J mice pre-exposed to stress displayed differences in morphine sensitivity. Our results support the hypothesis that genetic variation in predisposition to stress responses influences morphine sensitivity and is likely to modulate the development of drug addiction.

4.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326622

RESUMEN

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Metaloproteinasa 8 de la Matriz , Monocitos , Estrés Psicológico , Animales , Humanos , Ratones , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/enzimología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Espacio Extracelular/metabolismo , Metaloproteinasa 8 de la Matriz/sangre , Metaloproteinasa 8 de la Matriz/deficiencia , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Monocitos/química , Monocitos/inmunología , Monocitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Tejido Parenquimatoso/metabolismo , Análisis de Expresión Génica de una Sola Célula , Conducta Social , Aislamiento Social , Estrés Psicológico/sangre , Estrés Psicológico/genética , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo
5.
Neurosci Res ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37992997

RESUMEN

Childhood and adolescent affiliations guide how individuals engage in social relationships throughout their lifetime and adverse experiences can promote biological alterations that facilitate behavioral maladaptation. Indeed, childhood victims of abuse are more likely to be diagnosed with conduct or mood disorders which are both characterized by altered social engagement. A key domain particularly deserving of attention is aggressive behavior, a hallmark of many disorders characterized by deficits in reward processing. Animal models have been integral in identifying both the short- and long-term consequences of stress exposure and suggest that whether it is disruption to parental care or social isolation, chronic exposure to early life stress increases corticosterone, changes the expression of neurotransmitters and neuromodulators, and facilitates structural alterations to the hypothalamus, hippocampus, and amygdala, influencing how these brain regions communicate with other reward-related substrates. Herein, we describe how adverse early life experiences influence social behavioral outcomes across a wide range of species and highlight the long-term biological mechanisms that are most relevant to maladaptive aggressive behavior.

6.
Proc Natl Acad Sci U S A ; 120(49): e2305778120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011565

RESUMEN

Clinical studies have revealed a high comorbidity between autoimmune diseases and psychiatric disorders, including major depressive disorder (MDD). However, the mechanisms connecting autoimmunity and depression remain unclear. Here, we aim to identify the processes by which stress impacts the adaptive immune system and the implications of such responses to depression. To examine this relationship, we analyzed antibody responses and autoimmunity in the chronic social defeat stress (CSDS) model in mice, and in clinical samples from patients with MDD. We show that socially stressed mice have elevated serum antibody concentrations. We also confirm that social stress leads to the expansion of specific T and B cell populations within the cervical lymph nodes, where brain-derived antigens are preferentially delivered. Sera from stress-susceptible (SUS) mice exhibited high reactivity against brain tissue, and brain-reactive immunoglobulin G (IgG) antibody levels positively correlated with social avoidance behavior. IgG antibody concentrations in the brain were significantly higher in SUS mice than in unstressed mice, and positively correlated with social avoidance. Similarly, in humans, increased peripheral levels of brain-reactive IgG antibodies were associated with increased anhedonia. In vivo assessment of IgG antibodies showed they largely accumulate around blood vessels in the brain only in SUS mice. B cell-depleted mice exhibited stress resilience following CSDS, confirming the contribution of antibody-producing cells to social avoidance behavior. This study provides mechanistic insights connecting stress-induced autoimmune reactions against the brain and stress susceptibility. Therapeutic strategies targeting autoimmune responses might aid in the treatment of patients with MDD featuring immune abnormalities.


Asunto(s)
Autoinmunidad , Trastorno Depresivo Mayor , Humanos , Ratones , Animales , Encéfalo , Conducta Social , Inmunoglobulina G , Estrés Psicológico/psicología , Ratones Endogámicos C57BL
7.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873069

RESUMEN

Second-messenger signaling within the mesolimbic reward circuit is involved in both the long-lived effects of stress and in the underlying mechanisms that promote drug abuse liability. To determine the direct role of kinase signaling within the nucleus accumbens, specifically mitogen-activated protein kinase 1 (ERK2), in mood- and drug-related behavior, we used a herpes-simplex virus to up- or down-regulate ERK2 in adult male rats. We then exposed rats to a battery of behavioral tasks including the elevated plus-maze, open field test, forced-swim test, conditioned place preference, and finally cocaine self-administration. Herein, we show that viral overexpression or knockdown of ERK2 in the nucleus accumbens induces distinct behavioral phenotypes. Specifically, over expression of ERK2 facilitated depression- and anxiety-like behavior while also increasing sensitivity to cocaine. Conversely, down-regulation of ERK2 attenuated behavioral deficits, while blunting sensitivity to cocaine. Taken together, these data implicate ERK2 signaling, within the nucleus accumbens, in the regulation of affective behaviors and modulating sensitivity to the rewarding properties of cocaine.

8.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662400

RESUMEN

Chronic stress induces changes in the periphery and the central nervous system (CNS) that contribute to neuropathology and behavioral abnormalities associated with psychiatric disorders. In this study, we examined the impact of peripheral and central inflammation during chronic social defeat stress (CSDS) in female mice. Compared to male mice, we found that female mice exhibited heightened peripheral inflammatory response and identified C-C motif chemokine ligand 5 (CCL5), as a stress-susceptibility marker in females. Blocking CCL5 signaling in the periphery promoted resilience to CSDS. In the brain, stress-susceptible mice displayed increased expression of C-C chemokine receptor 5 (CCR5), a receptor for CCL5, in microglia in the prefrontal cortex (PFC). This upregulation was associated with microglia morphological changes, their increased migration to the blood vessels, and enhanced phagocytosis of synaptic components and vascular material. These changes coincided with neurophysiological alterations and impaired blood-brain barrier (BBB) integrity. By blocking CCR5 signaling specifically in the PFC were able to prevent stress-induced physiological changes and rescue social avoidance behavior. Our findings are the first to demonstrate that stress-mediated dysregulation of the CCL5-CCR5 axis triggers excessive phagocytosis of synaptic materials and neurovascular components by microglia, resulting in disruptions in neurotransmission, reduced BBB integrity, and increased stress susceptibility. Our study provides new insights into the role of cortical microglia in female stress susceptibility and suggests that the CCL5-CCR5 axis may serve as a novel sex-specific therapeutic target for treating psychiatric disorders in females.

9.
Sci Rep ; 13(1): 10872, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407659

RESUMEN

Increased use of benzodiazepines in adolescents have been reported, with alprazolam (ALP) being the most abused. Drug abuse during adolescence can induce changes with lasting consequences. This study investigated the neurobiological consequences of ALP exposure during adolescence in C57BL/6J male mice. Mice received ALP (0, 0.5, 1.0 mg/kg) once/daily (postnatal day 35-49). Changes in responsiveness to morphine (2.5, 5.0 mg/kg), using the conditioned place preference paradigm, were assessed 24-h and 1-month after ALP exposure. In a separate experiment, mice received ALP (0, 0.5 mg/kg) and then sacrificed 24-h or 1-month after treatment to assess levels of extracellular signal regulated kinase 1/2 (ERK1/2) gene expression, protein phosphorylation, and downstream targets (CREB, AKT) within the ventral tegmental area (VTA) and nucleus accumbens (NAc). ALP-pretreated mice developed a strong preference to the compartment(s) paired with a subthreshold dose (2.5 mg/kg) of MOR short-term, and this effect was also present in the 1-month group. Adolescent ALP exposure resulted in dysregulation of ERK-signaling within the VTA-NAc pathway 24-h and 1-month after ALP exposure. Results indicate ALP exposure during adolescence potentiates the rewarding properties of MOR and induces persistent changes in ERK-signaling within the VTA-NAc pathway, a brain circuit highly implicated in the regulation of both drug reward and mood- related behaviors.


Asunto(s)
Morfina , Área Tegmental Ventral , Masculino , Ratones , Animales , Morfina/farmacología , Morfina/metabolismo , Área Tegmental Ventral/metabolismo , Alprazolam/farmacología , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Sistemas de Mensajero Secundario , Recompensa
10.
Res Sq ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778505

RESUMEN

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.

11.
Nature ; 613(7945): 696-703, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450985

RESUMEN

In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.


Asunto(s)
Vías Nerviosas , Trauma Psicológico , Recompensa , Núcleos Septales , Conducta Social , Estrés Psicológico , Animales , Femenino , Masculino , Ratones , Encéfalo/patología , Encéfalo/fisiopatología , Calcio/análisis , Calcio/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neurotensina/metabolismo , Optogenética , Trauma Psicológico/patología , Trauma Psicológico/fisiopatología , Núcleos Septales/patología , Núcleos Septales/fisiopatología , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología
12.
Chronic Stress (Thousand Oaks) ; 6: 24705470221111094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874910

RESUMEN

Background: Individuals who experience emotional, physical, or sexual abuse as children suffer from higher rates of major depressive disorder, drug abuse, and suicide. Early life interventions such as peer support groups can be beneficial to adolescents who experience trauma, suggesting that social support is important in facilitating rehabilitation and promoting resiliency to stress. Although there are some animal paradigms that can model how peer-peer interactions influence stress-reactivity, less is known about how individual stress experiences influence the effectiveness of social buffering. Methods: The vicarious social defeat stress (VSDS) paradigm allows for the assessment of two different stress modalities, physical (PS) and emotional (ES) stress, which confer different levels of stress with similar biological and behavioral outcomes. Using a modified VSDS paradigm in which pairs of mice experience ES and PS together we can begin to evaluate how stress exposure influences the buffering efficacy of social relationships. Adolescent mice (postnatal day 35) were randomly combined into dyads and were allocated into either mutual experience or cohabitation pairs. Within each dyad, one mouse was assigned to the physically stressed (PS) condition and was repeatedly exposed to an aggressive CD1 mouse while the other mouse was designated as the partner. In the mutual experience dyads the partner mice witnessed the defeat bout (ES) while in the cohabitation dyads the partner was separated from the PS mouse and returned after the 10 min defeat bout was terminated (non-stressed). After 10 days of defeat, mice were tested in the social interaction test (SIT), the elevated plus maze (EPM), and the forced swim test (FST). Results: PS-exposed mice in the cohabitation dyads, but not those in the mutual experience dyads, showed significantly more avoidance of a novel CD1 aggressor or c57BL/6 mouse, in the SIT. Surprisingly, both partner conditions showed avoidance to a CD1. Interestingly, non-stressed partner mice spent less time in the open arms of the EPM, suggesting increased anxiety; only PS-exposed mice in cohabitation dyads showed more time spent immobile in the FST, indicative of increased learned helplessness. Conclusions: These data suggest that the efficacy of social buffering can be mediated by individual stress experience.

13.
Nat Commun ; 13(1): 164, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013188

RESUMEN

Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD.


Asunto(s)
Ansiedad/metabolismo , Barrera Hematoencefálica/metabolismo , Depresión/metabolismo , Trastorno Depresivo Mayor/metabolismo , Selectina E/genética , Estrés Psicológico/metabolismo , Transcriptoma , Animales , Ansiedad/genética , Ansiedad/patología , Transporte Biológico , Biomarcadores/metabolismo , Barrera Hematoencefálica/patología , Depresión/genética , Depresión/patología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Selectina E/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/irrigación sanguínea , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Corteza Prefrontal/irrigación sanguínea , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Caracteres Sexuales , Estrés Psicológico/genética , Estrés Psicológico/patología
14.
Mol Psychiatry ; 27(5): 2563-2579, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33931727

RESUMEN

Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1ß (IL-1ß) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1ß in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1ß signaling in the DRN controls expression of aggressive behavior.


Asunto(s)
Agresión , Núcleo Dorsal del Rafe , Interleucina-1beta , Serotonina , Agresión/fisiología , Animales , Núcleo Dorsal del Rafe/metabolismo , Humanos , Individualidad , Interleucina-1beta/metabolismo , Masculino , Ratones , Serotonina/metabolismo
15.
Biol Psychiatry ; 91(1): 81-91, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33896623

RESUMEN

BACKGROUND: Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS: We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS: When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS: Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.


Asunto(s)
Trastorno Depresivo Mayor , Anhedonia , Animales , Ansiedad , Femenino , Masculino , Ratones , Corteza Prefrontal , Caracteres Sexuales
16.
Elife ; 102021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34581271

RESUMEN

Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, although gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.


Asunto(s)
Jerarquia Social , Ratones/psicología , Estrés Psicológico , Adaptación Psicológica , Animales , Conducta Animal , Femenino , Masculino , Ratones Endogámicos C57BL , Distancia Psicológica , Predominio Social
17.
Front Neurosci ; 15: 701919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408623

RESUMEN

A dramatic increase in the prevalence of major depression and diet-related disorders in adolescents has been observed over several decades, yet the mechanisms underlying this comorbidity have only recently begun to be elucidated. Exposure to western-style diet (WSD), high in both fats (45% kcal) and carbohydrates (35% kcal): e.g., high fat diet (HFD), has been linked to the development of metabolic syndrome-like symptoms and behavioral dysregulation in rodents, as similarly observed in the human condition. Because adolescence is a developmental period highlighted by vulnerability to both stress and poor diet, understanding the mechanism(s) underlying the combined negative effects of WSDs and stress on mood and reward regulation is critical. To this end, adolescent male C57 mice were exposed to vicarious social defeat stress (VSDS), a stress paradigm capable of separating physical (PS) versus psychological/emotional (ES) stress, followed by normal chow (NC), HFD, or a separate control diet high in carbohydrates (same sucrose content as HFD) and low in fat (LFD), while measuring body weight and food intake. Non-stressed control mice exposed to 5 weeks of NC or HFD showed no significant differences in body weight or social interaction. Mice exposed to VSDS (both ES and PS) gain weight rapidly 1 week after initiation of HFD, with the ES-exposed mice showing significantly higher weight gain as compared to the HFD-exposed control mice. These mice also exhibited a reduction in saccharin preference, indicative of anhedonic-like behavior. To further delineate whether high fat was the major contributing factor to these deficits, LFD was introduced. The mice in the VSDS + HFD gained weight more rapidly than the VSDS + LFD group, and though the LFD-exposed mice did not gain weight as rapidly as the HFD-exposed mice, both the VSDS + LFD- and VSDS + HFD-exposed mice exhibited attenuated response to the antidepressant fluoxetine. These data show that diets high in both fats and carbohydrates are responsible for rapid weight gain and reduced reward sensitivity; and that while consumption of diet high in carbohydrate and low in fat does not lead to rapid weight gain, both HFD and LFD exposure after stress leads to reduced responsiveness to antidepressant treatment.

18.
Biol Psychiatry ; 90(7): 482-493, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34247781

RESUMEN

BACKGROUND: Major depressive disorder is prevalent in children and adolescents and is associated with a high degree of morbidity throughout life, with potentially devastating personal consequences and public health impact. The efficacy of ketamine (KET) as an antidepressant has been demonstrated in adolescent rodents; however, the neurobiological mechanisms underlying these effects are unknown. Recent evidence showed that KET reverses stress-induced (i.e., depressive-like) deficits within major mesocorticolimbic regions, such as the prefrontal cortex, nucleus accumbens (NAc), and hippocampus, in adult rodents. However, little is known about KET's effect in the ventral tegmental area (VTA), which provides the majority of dopaminergic input to these brain regions. METHODS: We characterized behavioral, biochemical, and electrophysiological effects produced by KET treatment in C57BL/6J male mice during adolescence (n = 7-10 per condition) within the VTA and its major projection regions, namely, the NAc and prefrontal cortex. Subsequently, molecular targets within the VTA-NAc projection were identified for viral gene transfer manipulations to recapitulate the effects of stress or KET treatment. RESULTS: Repeated KET treatment produced a robust proresilient response to chronic social defeat stress. This effect was largely driven by Akt signaling activity within the VTA and NAc, and it could be blocked or recapitulated through direct Akt-viral-mediated manipulation. Additionally, we found that the KET-induced resilient phenotype is dependent on VTA-NAc, but not VTA-prefrontal cortex, pathway activity. CONCLUSIONS: These findings indicate that KET exposure during adolescence produces a proresilient phenotype mediated by changes in Akt intracellular signaling and altered neuronal activity within the VTA-NAc pathway.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens , Fenotipo , Área Tegmental Ventral
19.
J Neurosci Res ; 98(12): 2541-2553, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918293

RESUMEN

Major depressive disorder affects ~20% of the world population and is characterized by strong sexual dimorphism with females being two to three times more likely to develop this disorder. Previously, we demonstrated that a combination therapy with dihydrocaffeic acid and malvidin-glucoside to synergistically target peripheral inflammation and stress-induced synaptic maladaptation in the brain was effective in alleviating chronic social defeat stress (CSDS)-induced depression-like phenotype in male mice. Here, we test the combination therapy in a female CSDS model for depression and compared sex-specific responses to stress in the periphery and the central nervous system. Similar to male mice, the combination treatment is also effective in promoting resilience against the CSDS-induced depression-like behavior in female mice. However, there are sex-specific differences in peripheral immune responses and differential gene regulation in the prefrontal cortex to chronic stress and to the treatment. These data indicate that while therapeutic approaches to combat stress-related disorders may be effective in both sexes, the mechanisms underlying these effects differ, emphasizing the need for inclusion of both sexes in preclinical studies using animal models.


Asunto(s)
Trastorno Depresivo Mayor/inmunología , Modelos Animales de Enfermedad , Inmunidad/fisiología , Corteza Prefrontal/inmunología , Caracteres Sexuales , Estrés Psicológico/inmunología , Animales , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/psicología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Prefrontal/metabolismo , Derrota Social , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología
20.
Psychopharmacology (Berl) ; 237(10): 3125-3137, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32594187

RESUMEN

Early life stress influences adult psychopathology and is associated with an increase in the propensity for drug use/seeking throughout the lifespan. Animal models corroborate that stress exposure exacerbates maladaptive reactivity to stressful stimuli while also shifting the rewarding properties of many drugs of abuse, including nicotine (NIC), a stimulant commonly misused by adolescents. Interestingly, NIC treatment can also normalize some stress-induced behavioral deficits in adult rodents; however, little is known about NIC's therapeutic efficacy following stress experienced during adolescence. The goal of the following experiments was to elucidate NIC's ability to buffer the negative consequences of stress exposure, and to further assess behavioral responsivity while on the drug. Given that stress often occurs in both physical and non-physical forms, we employed the vicarious social defeat stress (VSDS) model which allows for investigation of both physical (PS) and emotional stress (ES) exposure. After 10 days, exposure to PS and ES decreased interaction with a social target in the social interaction test (SIT), confirming social avoidance. Groups were further divided and given NIC (0.0 or 160 mg/L) in their drinking water. After 1 month of NIC consumption, the mice were exposed to the SIT, elevated plus maze (EPM), and the forced swim test (FST), respectively. NIC-treated mice showed a reversal of stress-induced deficits in the EPM and FST. Surprisingly, the mice did not show improvement in the SIT regardless of treatment condition. Together, these data confirm NIC's ability to normalize some stress-induced behavioral deficits; however, NIC's effects on social behavior need further investigation.


Asunto(s)
Nicotina/administración & dosificación , Distrés Psicológico , Conducta Social , Estrés Fisiológico/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Factores de Edad , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Agonistas Nicotínicos/administración & dosificación , Estrés Fisiológico/fisiología , Estrés Psicológico/psicología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...